Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Viruses ; 16(2)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38400069

RESUMEN

Orthobunyaviruses (order Bunyavirales, family Peribunyaviridae) in the Simbu serogroup have been responsible for widespread epidemics of congenital disease in ruminants. Australia has a national program to monitor arboviruses of veterinary importance. While monitoring for Akabane virus, a novel orthobunyavirus was detected. To inform the priority that should be given to this detection, a scoping review was undertaken to (1) characterise the associated disease presentations and establish which of the Simbu group viruses are of veterinary importance; (2) examine the diagnostic assays that have undergone development and validation for this group of viruses; and (3) describe the methods used to monitor the distribution of these viruses. Two search strategies identified 224 peer-reviewed publications for 33 viruses in the serogroup. Viruses in this group may cause severe animal health impacts, but only those phylogenetically arranged in clade B are associated with animal disease. Six viruses (Akabane, Schmallenberg, Aino, Shuni, Peaton, and Shamonda) were associated with congenital malformations, neurological signs, and reproductive disease. Diagnostic test interpretation is complicated by cross-reactivity, the timing of foetal immunocompetence, and sample type. Serological testing in surveys remains a mainstay of the methods used to monitor the distribution of SGVs. Given significant differences in survey designs, only broad mean seroprevalence estimates could be provided. Further research is required to determine the disease risk posed by novel orthobunyaviruses and how they could challenge current diagnostic and surveillance capabilities.


Asunto(s)
Infecciones por Bunyaviridae , Enfermedades de los Bovinos , Orthobunyavirus , Virus Simbu , Bovinos , Animales , Ganado , Infecciones por Bunyaviridae/diagnóstico , Infecciones por Bunyaviridae/epidemiología , Infecciones por Bunyaviridae/veterinaria , Estudios Seroepidemiológicos , Serogrupo , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Pruebas Diagnósticas de Rutina
2.
Microbiome ; 11(1): 158, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491320

RESUMEN

BACKGROUND: Bovine respiratory disease (BRD) is one of the most common diseases in intensively managed cattle, often resulting in high morbidity and mortality. Although several pathogens have been isolated and extensively studied, the complete infectome of the respiratory complex consists of a more extensive range unrecognised species. Here, we used total RNA sequencing (i.e., metatranscriptomics) of nasal and nasopharyngeal swabs collected from animals with and without BRD from two cattle feedlots in Australia. RESULTS: A high abundance of bovine nidovirus, influenza D, bovine rhinitis A and bovine coronavirus was found in the samples. Additionally, we obtained the complete or near-complete genome of bovine rhinitis B, enterovirus E1, bovine viral diarrhea virus (sub-genotypes 1a and 1c) and bovine respiratory syncytial virus, and partial sequences of other viruses. A new species of paramyxovirus was also identified. Overall, the most abundant RNA virus, was the bovine nidovirus. Characterisation of bacterial species from the transcriptome revealed a high abundance and diversity of Mollicutes in BRD cases and unaffected control animals. Of the non-Mollicutes species, Histophilus somni was detected, whereas there was a low abundance of Mannheimia haemolytica. CONCLUSION: This study highlights the use of untargeted sequencing approaches to study the unrecognised range of microorganisms present in healthy or diseased animals and the need to study previously uncultured viral species that may have an important role in cattle respiratory disease. Video Abstract.


Asunto(s)
Enfermedades de los Bovinos , Enfermedades Respiratorias , Rinitis , Virus , Animales , Bovinos , Australia , Virus/genética , Enfermedades de los Bovinos/microbiología
3.
Vaccines (Basel) ; 11(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37376432

RESUMEN

Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.

4.
Microorganisms ; 10(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35744614

RESUMEN

Since the identification of Hendra virus (HeV) infections in horses in Australia in 1994, more than 80 outbreaks in horses have been reported, and four out of seven spillover infections in humans had a fatal outcome. With the availability of a subunit vaccine based on the HeV-Glycoprotein (HeV-G), there is a need to serologically Differentiate the Infected from the Vaccinated Animals (DIVA). We developed an indirect ELISA using HeV-G expressed in Leishmania tarentolae and HeV-Nucleoprotein (HeV-N) expressed in recombinant baculovirus-infected insect cells as antigens. During evaluation, we tested panels of sera from naïve, vaccinated and infected horses that either originated from a Hendra-virus free region, or had been pre-tested in validated diagnostic tests. Our data confirm the reliability of this approach, as HeV-N-specific antibodies were only detected in sera from infected horses, while HeV-G-specific antibodies were detected in infected and vaccinated horses with a high level of specificity and sensitivity. Given the excellent correlation of data obtained for German and Australian HeV-negative horses, we assume that this test can be applied for the testing of horse serum samples from a variety of geographical regions.

5.
Vaccines (Basel) ; 10(5)2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35632422

RESUMEN

The use of rabbit hemorrhagic disease virus (RHDV) as a biocontrol agent to control feral rabbit populations in Australia, in combination with circulating endemic strains, provides a unique environment to observe the interactions between different lagoviruses competing for the same host. Following the arrival of RHDV2 (GI.2) in Australia, it became necessary to investigate the potential for immunological cross-protection between different variants, and the implications of this for biocontrol programs and vaccine development. Laboratory rabbits of various immune status-(1) rabbits with no detectable immunity against RHDV; (2) rabbits with experimentally acquired immunity after laboratory challenge; (3) rabbits immunised with a GI.2-specific or a multivalent RHDV inactivated virus prototype vaccine; or (4) rabbits with naturally acquired immunity-were challenged with one of three different RHDV variants (GI.1c, GI.1a or GI.2). The degree of cross-protection observed in immune rabbits was associated with the variant used for challenge, infectious dose of the virus and age, or time since acquisition of the immunity, at challenge. The immune status of feral rabbit populations should be determined prior to intentional RHDV release because of the high survival proportions in rabbits with pre-existing immunity. In addition, to protect domestic rabbits in Australia, a multivalent RHDV vaccine should be considered because of the limited cross-protection observed in rabbits given monovalent vaccines.

6.
Transbound Emerg Dis ; 69(5): e2590-e2601, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35621508

RESUMEN

In the last decade, real-time polymerase chain reaction (PCR) has been increasingly adopted for bluetongue diagnosis with both broadly reactive and serotype-specific assays widely used. The use of these assays and nucleic acid sequencing technologies have enhanced bluetongue virus detection, resulting in the identification of a number of new serotypes. As a result, 27 different serotypes are officially recognised, and at least three more are proposed. Rapid identification of the virus serotype is essential for matching of antigens used in vaccines and to undertake surveillance and epidemiological studies to assist risk management. However, it is not uncommon for multiple serotypes to circulate in a region either concurrently or in successive years. It is therefore necessary to have a large suite of assays available to ensure that the full spectrum of viruses is detected. Nevertheless, covering a large range of virus serotypes is demanding from both a time and resource perspective. To overcome these challenges, real-time PCR assays were optimised to match local virus strains and then combined in a panel of quadriplex assays, resulting in three assays to detect 12 serotypes directly from blood samples from cattle and sheep. These multiplex assays have been used extensively for bluetongue surveillance in both sentinel animals and opportunistically collected samples. A protocol to adapt these assays to capture variations in local strains of bluetongue virus and to expand the panel is described. Collectively, these assays provide powerful tools for surveillance and the rapid identification of bluetongue virus serotypes directly from animal blood samples.


Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Enfermedades de los Bovinos , Ácidos Nucleicos , Enfermedades de las Ovejas , Animales , Lengua Azul/diagnóstico , Lengua Azul/epidemiología , Virus de la Lengua Azul/genética , Bovinos , Enfermedades de los Bovinos/diagnóstico , Enfermedades de los Bovinos/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Serogrupo , Ovinos
7.
PLoS Pathog ; 18(5): e1010150, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35536868

RESUMEN

Most of our understanding of the ecology and evolution of avian influenza A virus (AIV) in wild birds is derived from studies conducted in the northern hemisphere on waterfowl, with a substantial bias towards dabbling ducks. However, relevant environmental conditions and patterns of avian migration and reproduction are substantially different in the southern hemisphere. Through the sequencing and analysis of 333 unique AIV genomes collected from wild birds collected over 15 years we show that Australia is a global sink for AIV diversity and not integrally linked with the Eurasian gene pool. Rather, AIV are infrequently introduced to Australia, followed by decades of isolated circulation and eventual extinction. The number of co-circulating viral lineages varies per subtype. AIV haemagglutinin (HA) subtypes that are rarely identified at duck-centric study sites (H8-12) had more detected introductions and contemporary co-circulating lineages in Australia. Combined with a lack of duck migration beyond the Australian-Papuan region, these findings suggest introductions by long-distance migratory shorebirds. In addition, on the available data we found no evidence of directional or consistent patterns in virus movement across the Australian continent. This feature corresponds to patterns of bird movement, whereby waterfowl have nomadic and erratic rainfall-dependant distributions rather than consistent intra-continental migratory routes. Finally, we detected high levels of virus gene segment reassortment, with a high diversity of AIV genome constellations across years and locations. These data, in addition to those from other studies in Africa and South America, clearly show that patterns of AIV dynamics in the Southern Hemisphere are distinct from those in the temperate north.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Animales , Animales Salvajes , Australia/epidemiología , Aves , Patos , Variación Genética , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Filogenia
8.
Front Vet Sci ; 8: 733404, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34621811

RESUMEN

Since their discovery in 2014, reptile nidoviruses (also known as serpentoviruses) have emerged as significant pathogens worldwide. They are known for causing severe and often fatal respiratory disease in various captive snake species, especially pythons. Related viruses have been detected in other reptiles with and without respiratory disease, including captive and wild populations of lizards, and wild populations of freshwater turtles. There are many opportunities to better understand the viral diversity, species susceptibility, and clinical presentation in different species in this relatively new field of research. In captive snake collections, reptile nidoviruses can spread quickly and be associated with high morbidity and mortality, yet the potential disease risk to wild reptile populations remains largely unknown, despite reptile species declining on a global scale. Experimental studies or investigations of disease outbreaks in wild reptile populations are scarce, leaving the available literature limited mostly to exploring findings of naturally infected animals in captivity. Further studies into the pathogenesis of different reptile nidoviruses in a variety of reptile species is required to explore the complexity of disease and routes of transmission. This review focuses on the biology of these viruses, hosts and geographic distribution, clinical signs and pathology, laboratory diagnosis and management of reptile nidovirus infections to better understand nidovirus infections in reptiles.

9.
Viruses ; 12(8)2020 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-32785119

RESUMEN

Bungowannah virus is a novel pestivirus identified from a disease outbreak in a piggery in Australia in June 2003. The aim of this study was to determine whether infection of pregnant pigs with Bungowannah virus induces the clinical signs and gross pathology observed during the initial outbreak and how this correlates with the time of infection. Twenty-four pregnant pigs were infected at one of four stages of gestation (approximately 35, 55, 75 or 90 days). The number of progeny born alive, stillborn or mummified, and signs of disease were recorded. Some surviving piglets were euthanased at weaning and others at ages up to 11 months. All piglets were subjected to a detailed necropsy. The greatest effects were observed following infection at 35 or 90 days of gestation. Infection at 35 days resulted in a significant reduction in the number of pigs born alive and an increased number of mummified foetuses (18%) and preweaning mortalities (70%). Preweaning losses were higher following infection at 90 days of gestation (29%) and were associated with sudden death and cardiorespiratory signs. Stunting occurred in chronically and persistently infected animals. This study reproduced the clinical signs and gross pathology of the porcine myocarditis syndrome and characterised the association between the time of infection and the clinical outcome.


Asunto(s)
Feto/virología , Miocarditis/veterinaria , Infecciones por Pestivirus/patología , Infecciones por Pestivirus/veterinaria , Pestivirus/patogenicidad , Complicaciones Infecciosas del Embarazo/veterinaria , Animales , Australia , Femenino , Miocarditis/patología , Miocarditis/virología , Embarazo , Complicaciones Infecciosas del Embarazo/virología , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología
10.
Viruses ; 12(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604922

RESUMEN

Bungowannah virus is a pestivirus known to cause reproductive losses in pigs. The virus has not been found in other species, nor is it known if it has the capacity to cause disease in other animals. Eight sheep, eight calves and seven pregnant cows were experimentally infected with Bungowannah virus. It was found that sheep and calves could be infected. Furthermore, it was shown that the virus is able to cross the bovine placenta and cause infection of the foetus. These findings demonstrate the potential for species other than pigs to become infected with Bungowannah virus and the need to prevent them from becoming infected.


Asunto(s)
Feto/virología , Intercambio Materno-Fetal/fisiología , Infecciones por Pestivirus/transmisión , Infecciones por Pestivirus/veterinaria , Pestivirus/patogenicidad , Animales , Bovinos , Enfermedades de los Bovinos/virología , Femenino , Placenta/metabolismo , Placenta/virología , Embarazo , Ovinos , Enfermedades de las Ovejas/virología , Especificidad de la Especie , Porcinos , Enfermedades de los Porcinos/virología
11.
Viruses ; 12(6)2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604932

RESUMEN

Bungowannah virus is a novel porcine pestivirus identified in a disease outbreak in Australia in 2003. The aim of this study was to determine the outcome of infection of the pregnant pig with this virus. Twenty-four pregnant pigs were infected at days 35, 55, 75 or 90 of gestation. Blood, tonsillar and rectal swabs were collected from each pig at birth and then weekly until euthanasia or death. Tissues were sampled at necropsy. Viral load was measured by real-time reverse-transcription polymerase chain reaction (qRT-PCR) and antibody levels in serum by peroxidase-linked immunoassay. Bungowannah virus was detected in the serum and excretions of all infected pigs at birth regardless of the stage of gestation at which infection occurred. Persistent infections occurred following infection prior to the development of foetal immunocompetence. Unexpectedly some animals infected at day 55 of gestation later cleared the virus and seroconverted. Viraemia and viral shedding resolved quickest following infection in late gestation.


Asunto(s)
Edad Gestacional , Infecciones por Pestivirus/patología , Infecciones por Pestivirus/veterinaria , Pestivirus/aislamiento & purificación , Complicaciones Infecciosas del Embarazo/virología , Animales , Australia , Femenino , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Enfermedades de los Porcinos/virología , Carga Viral , Viremia/diagnóstico
12.
Viruses ; 12(6)2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580423

RESUMEN

Infection of bulls with bovine viral diarrhoea virus (BVDV) can result in the development of virus persistence, confined to the reproductive tract. These bulls develop a normal immune response with high neutralizing antibody titres. However, BVDV can be excreted in the semen for a prolonged period. Although relatively rare, in this study we describe six separate cases in bulls being prepared for admission to artificial breeding centres. Semen samples were tested in a pan-Pestivirus-reactive real-time PCR assay and viral RNA was detected in semen from five of the bulls for three to eight months after infection. In one bull, virus was detected at low levels for more than five years. This bull was found to have one small testis. When slaughtered, virus was only detected in the abnormal testis. The low levels of BVDV in the semen of these bulls were only intermittently detected by virus isolation in cell culture. This virus-contaminated semen presents a biosecurity risk and confirms the need to screen all batches of semen from bulls that have been previously infected with BVDV. The use of real-time PCR is recommended as the preferred laboratory assay for this purpose.


Asunto(s)
Diarrea Mucosa Bovina Viral/epidemiología , Diarrea Mucosa Bovina Viral/transmisión , Virus de la Diarrea Viral Bovina/aislamiento & purificación , Semen/virología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Diarrea Mucosa Bovina Viral/diagnóstico , Bovinos , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Testículo/virología , Viremia/virología
13.
Virus Genes ; 55(3): 298-303, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30706196

RESUMEN

Bungowannah virus, which belongs to the genus Pestivirus within the family Flaviviridae, has been associated with myocarditis and a high incidence of stillbirths in pigs. In 2003, the virus was initially detected in a large pig farming complex on two separate sites in New South Wales, Australia. Until now, it has not been detected at other locations. Despite a program of depopulation and disinfection, the virus could be only eradicated from one of the affected farm complexes, the Bungowannah unit, but became endemic on the second complex, the Corowa unit. In the present study, the genetic variability of virus isolates collected between 2003 and 2014 in the endemically infected population has been retrospectively investigated. Phylogenetic analysis carried out based on sequences of the E2 and NS5B coding regions and the full-length open-reading frame revealed that the isolates from the different farm sites are closely related, but that samples collected between 2010 and 2014 at the Corowa farm site clustered in a different branch of the phylogenetic tree. Since 2010, a high-genetic stability of this RNA virus within the Corowa farm complex, probably due to an effective adaptation of the virus to the affected pig population, could be observed.


Asunto(s)
Infecciones por Pestivirus/genética , Pestivirus/genética , Mortinato/genética , Enfermedades de los Porcinos/genética , Animales , Australia , Brotes de Enfermedades , Pestivirus/patogenicidad , Infecciones por Pestivirus/veterinaria , Infecciones por Pestivirus/virología , Estudios Retrospectivos , Mortinato/veterinaria , Porcinos , Enfermedades de los Porcinos/virología
14.
PLoS One ; 13(10): e0205209, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356240

RESUMEN

In mid-February 2015, a large number of deaths were observed in the sole extant population of an endangered species of freshwater snapping turtle, Myuchelys georgesi, in a coastal river in New South Wales, Australia. Mortalities continued for approximately 7 weeks and affected mostly adult animals. More than 400 dead or dying animals were observed and population surveys conducted after the outbreak had ceased indicated that only a very small proportion of the population had survived, severely threatening the viability of the wild population. At necropsy, animals were in poor body condition, had bilateral swollen eyelids and some animals had tan foci on the skin of the ventral thighs. Histological examination revealed peri-orbital, splenic and nephric inflammation and necrosis. A virus was isolated in cell culture from a range of tissues. Nucleic acid sequencing of the virus isolate has identified the entire genome and indicates that this is a novel nidovirus that has a low level of nucleotide similarity to recognised nidoviruses. Its closest relatives are nidoviruses that have recently been described in pythons and lizards, usually in association with respiratory disease. In contrast, in the affected turtles, the most significant pathological changes were in the kidneys. Real time PCR assays developed to detect this virus demonstrated very high virus loads in affected tissues. In situ hybridisation studies confirmed the presence of viral nucleic acid in tissues in association with pathological changes. Collectively these data suggest that this virus is the likely cause of the mortalities that now threaten the survival of this species. Bellinger River Virus is the name proposed for this new virus.


Asunto(s)
Especies en Peligro de Extinción , Nidovirales/genética , Nidovirales/aislamiento & purificación , Tortugas/virología , Animales , Australia , Lagartos , Nidovirales/patogenicidad , Filogenia , ARN Viral , Ríos
15.
J Vet Diagn Invest ; 30(4): 554-559, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29860932

RESUMEN

We evaluated a fluorogenic probe-based assay for the detection of encephalomyocarditis virus (EMCV) by comparing a set of published primers and probe to a new set of primers and probe. The published reagents failed to amplify a range of Australian isolates and an Italian reference strain of EMCV. In contrast, an assay based on 2 new sets of primers and probes that were run in a duplex reverse-transcription real-time PCR (RT-rtPCR) worked well, with high amplification efficiency. The analytical sensitivity was ~100-fold higher than virus isolation in cell culture. The intra-assay variation was 0.21-4.90%. No cross-reactivity was observed with a range of other porcine viruses. One hundred and twenty-two clinical specimens were tested simultaneously by RT-rtPCR and virus isolation in cell culture; 72 specimens gave positive results by RT-rtPCR, and 63 of these were also positive by virus isolation. Of 245 archived cell culture isolates of EMCV that were tested in the RT-rtPCR, 242 samples were positive. The new duplex RT-rtPCR assay is a reliable tool for the detection of EMCV in clinical specimens and for use in epidemiologic investigations.


Asunto(s)
Infecciones por Cardiovirus/veterinaria , Virus de la Encefalomiocarditis/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/veterinaria , Animales , Australia , Camelidae , Infecciones por Cardiovirus/diagnóstico , Bovinos , Cartilla de ADN , Virus de la Encefalomiocarditis/genética , Marsupiales , ARN Viral/análisis , Sensibilidad y Especificidad , Especificidad de la Especie , Porcinos
16.
Vet Microbiol ; 216: 31-37, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29519522

RESUMEN

Schmallenberg virus (SBV) and Akabane virus (AKAV) are teratogenic Simbu serogroup Orthobunyaviruses. Embryonated chicken egg models (ECE) have been used to study the pathogenicity and teratogenicity of Simbu viruses previously, however to date no such studies have been reported for SBV. Hence, the aims of this study were to investigate if ECE are susceptible to experimental SBV infection, and to evaluate the pathogenicity and teratogenicity of SBV and AKAV in ECE models. Two studies were conducted. In Study A, SBV (106.4 TCID50) was inoculated into the yolk-sac of 6-day-old and 8-day-old ECEs. In Study B, SBV and AKAV were inoculated into 7-day-old ECEs at a range of doses (102.0-106.0 TCID50). ECE were incubated at 37 °C until day 19, when they were submitted for pathological and virological examination. SBV infection in ECE at 6, 7 and 8 days of incubation resulted in stunted growth and musculoskeletal malformations (arthrogryposis, skeletal muscle atrophy, contracted toes, distorted and twisted legs). Mortality was greater in embryos inoculated with SBV (31%) compared to AKAV (19%), (P < 0.01), suggesting that SBV was more embryo-lethal. However, embryos infected with AKAV had a significantly higher prevalence of stunted growth (P < 0.05) and musculoskeletal malformations (P < 0.01), suggesting that AKAV was more teratogenic in this model. These studies demonstrate for the first time that the ECE model is a suitable in vivo small animal model to study SBV. Furthermore, these results are consistent with the clinico-pathological findings of natural SBV and AKAV infection in ruminants.


Asunto(s)
Infecciones por Bunyaviridae/veterinaria , Orthobunyavirus/patogenicidad , Virus Simbu/patogenicidad , Teratógenos , Animales , Infecciones por Bunyaviridae/virología , Embrión de Pollo , Virulencia
17.
Vet Res ; 48(1): 82, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29169390

RESUMEN

The distribution of bluetongue viruses (BTV) in Australia is represented by two distinct and interconnected epidemiological systems (episystems)-one distributed primarily in the north and one in the east. The northern episystem is characterised by substantially greater antigenic diversity than the eastern episystem; yet the forces that act to limit the diversity present in the east remain unclear. Previous work has indicated that the northern episystem is linked to that of island South East Asia and Melanesia, and that BTV present in Indonesia, Papua New Guinea and East Timor, may act as source populations for new serotypes and genotypes of BTV to enter Australia's north. In this study, the genomes of 49 bluetongue viruses from the eastern episystem and 13 from Indonesia were sequenced and analysed along with 27 previously published genome sequences from the northern Australian episystem. The results of this analysis confirm that the Australian BTV population has its origins in the South East Asian/Melanesian episystem, and that incursions into northern Australia occur with some regularity. In addition, the presence of limited genetic diversity in the eastern episystem relative to that found in the north supports the presence of substantial, but not complete, barriers to gene flow between the northern and eastern Australian episystems. Genetic bottlenecks between each successive episystem are evident, and appear to be responsible for the reduction in BTV genetic diversity observed in the north to south-east direction.


Asunto(s)
Virus de la Lengua Azul/genética , Variación Genética , Genoma Viral , Australia , Genómica , Indonesia , Filogenia , Análisis de Secuencia de ADN , Proteínas no Estructurales Virales/genética , Proteínas Virales/genética
18.
Vector Borne Zoonotic Dis ; 17(12): 825-835, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29083957

RESUMEN

In Australia, infection of horses with the West Nile virus (WNV) or Murray Valley encephalitis virus (MVEV) occasionally results in severe neurological disease that cannot be clinically differentiated. Confirmatory serological tests to detect antibody specific for MVEV or WNV in horses are often hampered by cross-reactive antibodies induced to conserved epitopes on the envelope (E) protein. This study utilized bacterially expressed recombinant antigens derived from domain III of the E protein (rE-DIII) of MVEV and WNV, respectively, to determine whether these subunit antigens provided specific diagnostic markers of infection with these two viruses. When a panel of 130 serum samples, from horses with known flavivirus infection status, was tested in enzyme-linked immunosorbent assay (ELISA) using rE-DIII antigens, a differential diagnosis of MVEV or WNV was achieved for most samples. Time-point samples from horses exposed to flavivirus infection during the 2011 outbreak of equine encephalitis in south-eastern Australia also indicated that the rE-DIII antigens were capable of detecting and differentiating MVEV and WNV infection in convalescent sera with similar sensitivity and specificity to virus neutralization tests and blocking ELISAs. Overall, these results indicate that the rE-DIII is a suitable antigen for use in rapid immunoassays for confirming MVEV and WNV infections in horses in the Australian context and warrant further assessment on sensitive, high-throughput serological platforms such as multiplex immune assays.


Asunto(s)
Virus de la Encefalitis del Valle Murray/aislamiento & purificación , Encefalitis por Arbovirus/veterinaria , Ensayo de Inmunoadsorción Enzimática/veterinaria , Enfermedades de los Caballos/virología , Fiebre del Nilo Occidental/veterinaria , Virus del Nilo Occidental/aislamiento & purificación , Animales , Anticuerpos Antivirales , Brotes de Enfermedades , Encefalitis por Arbovirus/diagnóstico , Encefalitis por Arbovirus/virología , Enfermedades de los Caballos/diagnóstico , Caballos , Pruebas de Neutralización/veterinaria , Nueva Gales del Sur/epidemiología , Proteínas Virales , Fiebre del Nilo Occidental/diagnóstico , Fiebre del Nilo Occidental/virología
19.
Dis Aquat Organ ; 125(3): 227-242, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28792421

RESUMEN

From January to June 2013 and November to January 2014, mass mortalities were reported in Pacific oysters Crassostrea gigas cultivated in Port Stephens estuary, New South Wales, Australia. In some cases, 100% mortality was reported in both triploid and diploid C. gigas, although native species of oyster cultivated in the same areas remained unaffected. Histological examination of oysters sampled from the time of mortality events revealed consistent but non-specific pathology, involving a diffuse haemocytic infiltrate in the connective tissue surrounding the digestive gland, extending into the mantle in some instances, but no other signs of any infectious aetiological agent. We conducted a structured survey in early January 2014 to compare samples of C. gigas from affected and unaffected areas by bacteriology and histopathology. Quantitative PCR excluded involvement of ostreid herpesvirus-1 (OsHV-1) in these mortality events. To determine whether a directly transmissible aetiological agent was responsible for the mortalities, naïve C. gigas sourced from an estuary where no evidence of mortality was reported were challenged with material derived from affected oysters. Significant mortality was only observed in naïve C. gigas directly inoculated with purified cultures of Vibrio spp. isolated from affected oysters, but this could not be replicated by cohabitation with naïve C. gigas. Analysis of environmental data indicated that mortality events generally coincided with periods of low salinity and high temperature. The results from this study suggest that the cause of the mortality events was multifactorial in nature and not due to any single directly transmissible aetiological agent.


Asunto(s)
Crassostrea , Animales , Bacterias/aislamiento & purificación , ADN Viral/aislamiento & purificación , Ambiente , Herpesviridae , Nueva Gales del Sur , Parásitos
20.
PLoS One ; 11(9): e0163014, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27661614

RESUMEN

Bluetongue virus is the type species of the genus Orbivirus, family Reoviridae. Bluetongue viruses (BTV) are transmitted between their vertebrate hosts primarily by biting midges (Culicoides spp.) in which they also replicate. Consequently BTV distribution is dependent on the activity, geographic distribution, and seasonal abundance of Culicoides spp. The virus can also be transmitted vertically in vertebrate hosts, and some strains/serotypes can be transmitted horizontally in the absence of insect vectors. The BTV genome is composed of ten linear segments of double-stranded (ds) RNA, numbered in order of decreasing size (Seg-1 to Seg-10). Genome segment 2 (Seg-2) encodes outer-capsid protein VP2, the most variable BTV protein and the primary target for neutralising antibodies. Consequently VP2 (and Seg-2) determine the identity of the twenty seven serotypes and two additional putative BTV serotypes that have been recognised so far. Current BTV vaccines are serotype specific and typing of outbreak strains is required in order to deploy appropriate vaccines. We report development and evaluation of multiple 'TaqMan' fluorescence-probe based quantitative real-time type-specific RT-PCR assays targeting Seg-2 of the 27+1 BTV types. The assays were evaluated using orbivirus isolates from the 'Orbivirus Reference Collection' (ORC) held at The Pirbright Institute. The assays are BTV-type specific and can be used for rapid, sensitive and reliable detection / identification (typing) of BTV RNA from samples of infected blood, tissues, homogenised Culicoides, or tissue culture supernatants. None of the assays amplified cDNAs from closely related but heterologous orbiviruses, or from uninfected host animals or cell cultures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...